rm(list = ls())
knitr::opts_chunk$set(echo = TRUE,
message = FALSE,
warning = FALSE,
fig.align = 'center',
dev = 'jpeg',
dpi = 300,
fig.align='center')
#XQuartz is a mess, put this in your onload to default to cairo instead
options(bitmapType = "cairo")
# (https://github.com/tidyverse/ggplot2/issues/2655)
# Lo mapas se hacen mas rapido
library(tidyverse)
library(ggridges)
library(readxl)
library(here)
library(lubridate)
library(readr)
library(ggthemes)
library(hrbrthemes)
library(viridis)
library(kableExtra)
library(ggalt)
library(rnaturalearth)
library(sf)
library(psych)
Identificar correlaciones entre variables relativas a los indicadores. La idea seria identificar variables respuestas como rendimiento y D15 cofrontadas con la otra información ambiental que rescata el proyecto FEMP-04
ChlData <- read_csv("~/IEO/DATA/Ambientales_Data/Clorophila_Data.csv")
ChlData$Fecha<-mdy(ChlData$Fecha)
Defino y separo las fechas entre Año, Mes y dia
ChlData<- ChlData %>%
mutate(
DIA = day(Fecha),
MES = month(Fecha),
ANO = year(Fecha)
)
Identifico en columnas separadas los sitios y las replicas
ChlData<- ChlData %>%
separate(Muestra, into = c("ID", "Sampling.point"), sep = "_") %>%
mutate(Site = as.numeric(sub("[A-Za-z]", "", Sampling.point)),
Modo = ifelse(grepl("[A-Za-z]", Sampling.point),
sub("[0-9]+", "", Sampling.point),
NA)) %>%
rename(CONCETR = `ug/l Sea water`) %>%
mutate(TRIM = cut(MES, breaks = c(0, 3, 6, 9, 12), labels = FALSE))
Primero el comportamiento. de la variabe y luego su tendencia por sitios y por tiempo.
histo1 <- ggplot(ChlData %>%
drop_na(), aes(CONCETR))+
geom_histogram(stat = "bin",
binwidth = 0.5)+
facet_wrap(ANO~., ncol=5)+
theme_bw()
histo1
Manipulo los datos y estimo una media y desviacion por variable
meanchl <- ChlData %>%
group_by(ANO,
TRIM,
Site) %>%
summarise(MEANCON = mean(CONCETR), na.rm = TRUE,
VARCON = sd(CONCETR),
INTENSIDAD= mean(Intensidad))
meach <- ggplot(meanchl %>%
drop_na(),
aes(ANO, MEANCON))+
geom_col(position = "dodge",
alpha=.7) +
geom_smooth(method= "loess",
se=FALSE)+
theme_few()+
# scale_x_continuous(breaks = seq(from = 2018, to = 2023, by = 1))+
scale_x_continuous(breaks = seq(from = 2018,
to = 2023,
by = 1))+
scale_y_continuous(breaks = seq(from = 0,
to = 5,
by = 2.5))+
facet_grid(Site~TRIM)+
theme(axis.text.x = element_text(angle = 90,
hjust = 1,
vjust= 0.5,
size = 8),
axis.text.y = element_text(size = 8),
legend.position = "none")+
ylab("Standar Deviation (ug/ml)") +
xlab("")+
ggtitle("Media de concentración Chla por Sitio de Muestreo y Trimestre")
meach
varch <- ggplot(meanchl %>%
drop_na(),
aes(ANO, VARCON))+
geom_point(alpha=.7) +
geom_smooth(method= "lm",
col="red")+
theme_few()+
# scale_x_continuous(breaks = seq(from = 2018, to = 2023, by = 1))+
scale_x_continuous(breaks = seq(from = 2018,
to = 2023,
by = 1))+
scale_y_continuous(breaks = seq(from = 0,
to = 2.5,
by = 0.5))+
facet_grid(Site~TRIM)+
theme(axis.text.x = element_text(angle = 90,
hjust = 1,
vjust= 0.5,
size = 8),
axis.text.y = element_text(size = 8),
legend.position = "none")+
ylab("Concentración (ug/ml)") +
xlab("")+
ylim(0,2.6)+
ggtitle("Desviación Standar Chla por Sitio de Muestreo y Trimestre")
varch
Relacion entre Concentracion e intensidad
rl1 <- ggplot(ChlData %>%
drop_na(),
aes(`ug/l Extracto`, Intensidad))+
geom_point(alpha=.7,
col="red") +
geom_smooth(method= "lm",
col=1)+
theme_few()+
# scale_x_continuous(breaks = seq(from = 2018, to = 2023, by = 1))+
facet_grid(Site~ANO)+
ylab("Extracto (ug/ml)") +
xlab("Intensidad")
rl1
Data correspondiente al objeto meanchl
saveRDS(meanchl, "Cloro.RDS")